snapatac2.pp.knn#
- snapatac2.pp.knn(adata, n_neighbors=50, use_dims=None, use_rep=None, method='hora', n_jobs=-1, inplace=True, random_state=0)[source]#
Compute a neighborhood graph of observations.
- Parameters:
adata (
AnnData
|AnnDataSet
|ndarray
) – Annotated data matrix or numpy array.n_neighbors (
int
) – The number of nearest neighbors to be searched.use_dims (
Union
[int
,list
[int
],None
]) – The dimensions used for computation.use_rep (
Optional
[str
]) – The key for the matrixmethod (
Literal
['hora'
,'pynndescent'
,'exact'
]) – ‘hora’, ‘pynndescent’, or ‘exact’n_jobs (
int
) – number of CPUs to useinplace (
bool
) – Whether to store the result in the anndata object.random_state (
int
) – Random seed for approximate nearest neighbor search.
- Returns:
if
inplace=True
, store KNN in.obsp['distances']
. Otherwise, return a sparse matrix.- Return type:
csr_matrix | None