
A guide to the single-cell
epigenomics analysis

Kai Zhang

Table of contents

Preface 1

1 What is epigenomics? 3

2 AnnData – Annotated Data 5
2.1 Introduction . 5
2.2 A tutorial on using backed AnnData objects 6

2.2.1 Reading/opening a h5ad file. 6
2.2.2 Closing a backed AnnData object 7
2.2.3 Creating a backed AnnData object 8
2.2.4 Accessing elements in a backed AnnData object . . . 8
2.2.5 Subsetting the AnnData 11
2.2.6 Convert to in-memory representation 11

2.3 Combining multiple AnnData objects into a AnnDataSet
object . 12
2.3.1 Subsetting an AnnDataSet object 14
2.3.2 Converting AnnDataSet to AnnData 14

3 Input data format 15
3.1 What is ATAC-seq? . 15
3.2 Single-Cell ATAC-Seq (scATAC-Seq) 15
3.3 Fragment interval format 16
3.4 Insertion format . 16

4 Dimension reduction 19
4.1 Preprocessing . 19
4.2 Spectral embedding . 19

iii

Table of contents

4.3 Matrix-free spectral embedding with cosine similarity 20
4.4 Nyström method . 22

References 25

iv

Preface

This book is used to complement the documentation of the SnapATAC2
Python/Rust package.

1

https://github.com/kaizhang/SnapATAC2

1 What is epigenomics?

(Work in progress)

3

2 AnnData – Annotated Data

2.1 Introduction

AnnData is both a data structure and an on-disk file specification that
facilitates the sharing of labeled data matrices.

The Python anndata package supports both in-memory and on-disk repre-
sentation of AnnData object. For detailed descriptions about the AnnData
format, please read anndata’s documentation.

Despite being an excellent package, the anndata package falls short of its
support for the on-disk representation or backed mode of AnnData object.
When opened in the backed mode, the in-memory snapshot and on-disk
data of AnnData are not in sync with each other, causing inconsistent and
unexpected behaviors. For example in the backed mode, anndata only
supports updates to the X slot in the AnnData object, which means any
changes to other slots like obs will not be written to disk. This make the
backed mode very cumbersome to use and often lead to unexpected out-
comes. Also, as it still reads all other componenets except X into memory,
it uses a lot of memory for large datasets.

To address these limitations, SnapATAC2 implements its own out-of-core
AnnData object with the following key features:

• AnnData is fully backed by the underlying hdf5 file. Any operations
on the AnnData object will be reflected on the hdf5 file.

5

https://anndata.readthedocs.io/en/latest/
https://anndata.readthedocs.io/en/latest/

2 AnnData – Annotated Data

• All elements are lazily loaded. No matter how large is the file, open-
ing it consume almost zero memory. Matrix data can be accessed
and processed by chunks, which keeps the memory usage to the min-
imum.

• In-memory cache can be turned on to speed up the repetitive access
of elements.

• Featuring an AnnDataSet object to lazily concatenate multiple An-
nData objects.

2.2 A tutorial on using backed AnnData objects

In this section, we will learn the basics about SnapATAC2’s AnnData
implementation.

2.2.1 Reading/opening a h5ad file.

SnapATAC2 can open h5ad files in either in-memory mode or backed mode.
By default, snapatac2.read open a h5ad file in backed mode.

import snapatac2 as snap
adata = snap.read(snap.datasets.pbmc5k(type='h5ad'))
adata

AnnData object with n_obs x n_vars = 4363 x 6176550 backed at '/home/kaizhang/.cache/snapatac2/atac_pbmc_5k.h5ad'
obs: 'tsse', 'n_fragment', 'frac_dup', 'frac_mito', 'doublet_score', 'is_doublet', 'leiden'
var: 'selected'
uns: 'scrublet_threshold', 'reference_sequences', 'scrublet_sim_doublet_score', 'spectral_eigenvalue'
obsm: 'insertion', 'X_spectral', 'X_umap'
obsp: 'distances'

6

2.2 A tutorial on using backed AnnData objects

You can turn the backed mode off using backed=False, which will use
the Python anndata package to read the file and create an in-memory
AnnData object.

import snapatac2 as snap
adata = snap.read(snap.datasets.pbmc5k(type='h5ad'), backed=None)
adata

Updating file 'atac_pbmc_5k.h5ad' from 'https://data.mendeley.com/api/datasets/dr2z4jbcx3/draft/files/d90adfd1-b4b8-4dcd-8704-9ab19f104116?a=758c37e5-4832-4c91-af89-9a1a83a051b3' to '/home/kaizhang/.cache/snapatac2'.

AnnData object with n_obs × n_vars = 4363 × 6176550
obs: 'tsse', 'n_fragment', 'frac_dup', 'frac_mito', 'doublet_score', 'is_doublet', 'leiden'
var: 'selected'
uns: 'reference_sequences', 'scrublet_sim_doublet_score', 'scrublet_threshold', 'spectral_eigenvalue'
obsm: 'X_spectral', 'X_umap', 'insertion'
obsp: 'distances'

2.2.2 Closing a backed AnnData object

The backed AnnData object in SnapATAC2 does not need to be saved as
it is always in sync with the data on disk. However, if you have opened the
h5ad file in write mode, it is important to remember to close the file using
the AnnData.close method. Otherwise, the underlying hdf5 file might be
corrupted.

adata = snap.read(snap.datasets.pbmc5k(type='h5ad'))
adata.close()
adata

Closed AnnData object

7

2 AnnData – Annotated Data

2.2.3 Creating a backed AnnData object

You can use the AnnData constructor to create a new AnnData object.

adata = snap.AnnData(filename='adata.h5ad')
adata

AnnData object with n_obs x n_vars = 0 x 0 backed at 'adata.h5ad'

You can then modify slots in the AnnData object.

import numpy as np
adata.X = np.ones((3, 4))
adata.obs_names = ["1", "2", "3"]
adata.var_names = ["a", "b", "c", "d"]
adata.obsm['matrix'] = np.ones((3, 10))
adata.varm['another_matrix'] = np.ones((4, 10))
adata

AnnData object with n_obs x n_vars = 3 x 4 backed at 'adata.h5ad'
obsm: 'matrix'
varm: 'another_matrix'

The matrices are now saved on the backing hdf5 file and will be cleared
from the memory.

2.2.4 Accessing elements in a backed AnnData object

Slots in backed AnnData object, e.g., AnnData.X, AnnData.obs, store ref-
erences to the actual data. Accessing those slots does not automatically
perform dereferencing or load the data into memory. Instead, a lazy ele-
ment will be returned, as demonstrated in the example below:

8

2.2 A tutorial on using backed AnnData objects

adata.X

Array(f64) element, cache_enabled: no, cached: no

However, asscessing the slots by keys will automatically read the data:

adata.obsm['matrix']

array([[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]])

To retreive the lazy element from obsm, you can use:

adata.obsm.el('matrix')

Array(f64) element, cache_enabled: no, cached: no

Several useful methods haven been implemented for lazy elements. For
example, you can use the slicing operator to read the full data or a part
of the data:

adata.X[:]

array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])

adata.X[:2, :2]

9

2 AnnData – Annotated Data

array([[1., 1.],
[1., 1.]])

You can also iterate over the chunks of the matrix using the chunked
method:

for chunk, fr, to in adata.obsm.el('matrix').chunked(chunk_size=2):
print("from row {} to {}: {}".format(fr, to - 1, chunk))

from row 0 to 1: [[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]
from row 2 to 2: [[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]

By default AnnData will read from the disk each time you request the
data. This will incur a lot of IO overheads if you do this repetitively.

%%time
for _ in range(1000):

adata.obsm['matrix']

CPU times: user 71.6 ms, sys: 2.19 ms, total: 73.8 ms
Wall time: 75.3 ms

One solution to this is to turn on the cache for the element you want to
repetitively read from.

%%time
adata.obsm.el('matrix').enable_cache()
for _ in range(1000):

adata.obsm['matrix']

10

2.2 A tutorial on using backed AnnData objects

CPU times: user 1.09 ms, sys: 889 µs, total: 1.98 ms
Wall time: 2.05 ms

The data will be cached the first time you request it and the subsequent
calls will make use of the cached data.

2.2.5 Subsetting the AnnData

The backed AnnData object does not have “views”. Instead, you need to
use the AnnData.subset method to create a new AnnData object.

adata_subset = adata.subset([0, 1], [0, 1], out="subset.h5ad")
adata_subset

AnnData object with n_obs x n_vars = 2 x 2 backed at 'subset.h5ad'
obsm: 'matrix'
varm: 'another_matrix'

You could also do this inplace without the out parameter:

adata_subset.subset([0])
adata_subset

AnnData object with n_obs x n_vars = 1 x 2 backed at 'subset.h5ad'
obsm: 'matrix'
varm: 'another_matrix'

2.2.6 Convert to in-memory representation

Finally, you can convert a backed AnnData to anndata’s in-memory An-
nData object using:

11

2 AnnData – Annotated Data

adata.to_memory()

AnnData object with n_obs × n_vars = 3 × 4
obsm: 'matrix'
varm: 'another_matrix'

2.3 Combining multiple AnnData objects into a
AnnDataSet object

Oftentimes you want to combine and deal with multiple h5ad files simul-
taniously. In this section you will learn how to do this efficiently.

First, let us create a bunch of AnnData objects.

def create_anndata(index: int):
adata = snap.AnnData(

X=np.ones((4, 7))*index,
filename=str(index) + ".h5ad",

)
adata.var_names = [str(i) for i in range(7)]
adata.obs_names = [str(i) for i in range(4)]
adata.obsm['matrix'] = np.random.rand(4,50)
return adata

list_of_anndata = [(str(i), create_anndata(i)) for i in range(10)]

We can then use the AnnDataSet constructor to horizontally concatenate
all AnnData objects.

dataset = snap.AnnDataSet(
adatas=list_of_anndata,
filename="dataset.h5ads",

12

2.3 Combining multiple AnnData objects into a AnnDataSet object

add_key="id",
)
dataset

AnnDataSet object with n_obs x n_vars = 40 x 7 backed at 'dataset.h5ads'
contains 10 AnnData objects with keys: '0', '1', '2', '3', '4', '5', '6', '7', '8', '9'

obs: 'id'
uns: 'AnnDataSet'

AnnDataSet is just a special form of AnnData objects. It inherits most of
the methods from AnnData. It carries its own annotations, such as obs,
var, obsm, etc. Besides, it grants you the access to component AnnData
objects as well, as shown in the example below:

dataset.adatas.obsm['matrix']

array([[0.47854061, 0.99419889, 0.38828345, ..., 0.57555765, 0.34434485,
0.00404227],

[0.97591552, 0.41426295, 0.44201055, ..., 0.6980712 , 0.70224684,
0.46961965],

[0.67283708, 0.78152856, 0.84262081, ..., 0.80723481, 0.43226258,
0.59216658],

...,
[0.86848189, 0.59009115, 0.03994883, ..., 0.40726983, 0.3129273 ,
0.92715631],

[0.07356977, 0.21489628, 0.97304235, ..., 0.5751299 , 0.26543831,
0.22631669],

[0.8568953 , 0.68685807, 0.87097324, ..., 0.64237306, 0.61865041,
0.23317167]])

13

2 AnnData – Annotated Data

2.3.1 Subsetting an AnnDataSet object

AnnDataSet can be subsetted in a way similar to AnnData objects. But
there is one caveat: subsetting an AnnDataSet will not rearrange the rows
across component AnnData objects.

2.3.2 Converting AnnDataSet to AnnData

An in-memory AnnData can be made from AnnDataSet using:

dataset.to_adata()

AnnData object with n_obs × n_vars = 40 × 7
obs: 'id'
uns: 'AnnDataSet'

14

3 Input data format

3.1 What is ATAC-seq?

ATAC-Seq stands for Assay for Transposase-Accessible Chromatin with
high-throughput sequencing.

3.2 Single-Cell ATAC-Seq (scATAC-Seq)

A major limitation of all methods that use populations of millions of cells
is that the data they produce is always an average of what’s happening in
each of the individual cells in the population, which averages out the cell-
to-cell variability that might be present in the sample and therefore might
eliminate the ability to make observations about interesting phenomena
in sub-populations. This variability is often an important feature of bi-
ology when it comes to things like tumor heterogeneity or developmental
processes.

SnapATAC2 accepts BAM or BED-like tabular file as input. The BED-like
tabular file can be used to represent fragments (paired-end sequencing) or
insertions (single-end sequencing). BAM files can be converted to BED-
like files using snapatac2.pp.make_fragment_file.

15

3 Input data format

3.3 Fragment interval format

Fragments are created by two separate transposition events, which create
the two ends of the observed fragment. Each unique fragment may gen-
erate multiple duplicate reads. These duplicate reads are collapsed into
a single fragment record. A fragment record must contain exactly
five fields:

1. Reference genome chromosome of fragment.
2. Adjusted start position of fragment on chromosome.
3. Adjusted end position of fragment on chromosome. The end position

is exclusive, so represents the position immediately following the
fragment interval.

4. The cell barcode of this fragment.
5. The total number of read pairs associated with this fragment. This

includes the read pair marked unique and all duplicate read pairs.

During data import, a fragment record is converted to two insertions cor-
responding to the start and end position of the fragment interval.

3.4 Insertion format

Insertion records are used to represent single-end reads in experiments
that sequence only one end of the fragments, e.g., Paired-Tag experiments.
While fragment records are created by two transposition events, insertion
records correspond to a single transposition event.

Each insertion record must contain six fields:

1. Reference genome chromosome.
2. Adjusted start position on chromosome.
3. Adjusted end position on chromosome. The end position is exclusive.
4. The cell barcode of this fragment.

16

3.4 Insertion format

5. The total number of reads associated with this insertion.
6. The strandness of the read.

During data import, the 5’ end of an insertion record is converted to one
insertion count.

Note: in both cases, the fifth column (duplication count) is not used during
reads counting. In other words, we count duplicated reads only once. If
you want to count the same record multiple times, you need to duplicate
them in the input file.

17

4 Dimension reduction

Single-cell ATAC-seq (scATAC-seq) produces large and highly sparse cell
by feature count matrix. Working directly with such a large matrix is very
inconvinent and computational intensive. Therefore typically, we need to
reduce the dimensionality of the count matrix before any downstream
analysis. Most of the counts in this matrix are very small. For example,
~50% of the counts are 1 in deeply sequenced scATAC-seq data. As a
result, many methods treat the count matrix as a binary matrix.

Different from most existing approaches, the dimension reduction method
used in SnapATAC2 is a pairwise-similarity based method, which requires
defining and computing similarity between each pair of cells in the data.
This method was first proposed in (Fang et al. 2021), the version 1 of Sna-
pATAC, and was called “diffusion map”. In SnapATAC2, we reformulate
this approach as spectral embedding, a.k.a., Laplacian eigenmaps.

4.1 Preprocessing

We preprocess the matrix by the Inverse Document Frequency (IDF)
weighting. In the context of scATAC-seq, the IDF is defined as:

4.2 Spectral embedding

Assuming the 𝑛 × 𝑝 cell by feature count matrix 𝐶 has been preprocessed,
we first compute the 𝑛 × 𝑛 pairwise similarity matrix 𝑊 such that 𝑊𝑖𝑗 =

19

4 Dimension reduction

𝛿(𝐶𝑖∗, 𝐶𝑗∗), where 𝛿 ∶ ℝ𝑝 × ℝ𝑝 → ℝ is the function defines the similarity
between any two cells. Typical choices of 𝛿 include the jaccard index and
the cosine similarity.

We then compute the symmetric normalized graph Laplacian 𝐿𝑠𝑦𝑚 = 𝐼 −
𝐷−1/2𝑊𝐷−1/2, where 𝐼 is the identity matrix and 𝐷 = 𝑑𝑖𝑎𝑔(𝑊1).
The bottom eigenvectors of 𝐿𝑠𝑦𝑚 are selected as the lower dimensional em-
bedding. The corresponding eigenvectors can be computed alternatively
as the top eigenvectors of the similarly normalized weight matrix:

�̃� = 𝐷−1/2𝑊𝐷−1/2,

4.3 Matrix-free spectral embedding with cosine
similarity

When using the cosine similarity, we can avoid computing the full similarity
matrix.

The cosine similarity between two vectors A and B is defined as:

𝑆𝑐(𝐴, 𝐵) = 𝐴 ⋅ 𝐵
||𝐴||||𝐵||

First we rescale the non-negative count matrix 𝐶 to 𝑋 such that the rows
of 𝑋 have unit 𝐿2 norm.

The cosine similarity matrix is then defined as,

𝑊 = 𝑋𝑋𝑇 − 𝐼

Note that we set the diagonal of 𝑊 to zeros by subtracting the identity
matrix. This is necessary because our benchmark result show that it gen-
erally improves the quality of the embedding.

20

4.3 Matrix-free spectral embedding with cosine similarity

The degree matrix can be computed as,

𝐷 = 𝑑𝑖𝑎𝑔((𝑋𝑋𝑇 − 𝐼)1) = 𝑑𝑖𝑎𝑔(𝑋(𝑋𝑇 1) − 1)

and,

�̃� = 𝐷−1/2𝑋𝑋𝑇 𝐷−1/2 − 𝐷−1 = �̃��̃�𝑇 − 𝐷−1

where �̃� = 𝐷−1/2𝑋.

Note that �̃� has the same size as 𝑋, and if X is sparse, �̃� preserves the
sparsity pattern of 𝑋.

We remark that this problem would be easier if we ignore the 𝐷−1 term,
because the eigenvectors of �̃��̃�𝑇 can be computed from the Singular Vec-
tor Decomposition (SVD) of �̃�. With the presence of the 𝐷−1 term, we
resort to the Lanczos algorithm to compute the top eigenvectors of �̃� with-
out ever computing �̃� . Each iteration in the Lanczos algorithm requires
computing the matrix-vector product between �̃� and v,

�̃�v = �̃�(�̃�𝑇 v) − 𝐷−1v

Using the specific order of operations shown in the formula above, we can
reduce the computational cost of the matrix-vector product to 2𝑧 + 𝑛,
where 𝑛 is the number of rows in 𝑋 and 𝑧 is the number of non-zero
elements in 𝑋.

As a comparision, performing this operation on the full similarity ma-
trix will need 𝑛2 computations. Note that 𝑧 ≪ 𝑛2 for most scATAC-seq
data. Computing the full similarity matrix additionally requires 𝑛3 com-
putations using the naive algorithm, which is prohibitively expensive for
large datasets. Therefore, the matrix-free method is much faster and more
memory efficient.

21

4 Dimension reduction

4.4 Nyström method

The matrix-free method described above is very fast and memory efficient.
However, for massive datasets with hundreds of millions of cells, storing the
cell by peak count matrix 𝐶 may already be a challenge. In this section,
we describe an on-line embedding method that can applied to virtually
arbitrary large datasets. The key idea here is to use the Nystrom method
to perform a low-rank approximation of the full similarity matrix.

We will be focusing on generating an approximation �̃� of 𝑊 based on a
sample of 𝑙 ≪ 𝑛 of its columns.

Suppose 𝑊 = [𝐴 𝐵
𝐵𝑇 𝐶] and columns [𝐴

𝐵𝑇] are our samples. We first

perform eigendecomposition on 𝐴 = 𝑈Λ𝑈𝑇 . The nystrom method ap-

proximates the eigenvectors of matrix 𝑊 by ̃𝑈 = [𝑈
𝐵𝑇 𝑈Λ−1].

We can then compute �̃� :

�̃� = ̃𝑈Λ ̃𝑈𝑇

= [𝑈
𝐵𝑇 𝑈Λ−1] Λ [𝑈𝑇 Λ−1𝑈𝑇 𝐵]

= [𝑈Λ𝑈𝑇 𝑈ΛΛ−1𝑈𝑇 𝐵
𝐵𝑇 𝑈Λ−1Λ𝑈𝑇 𝐵𝑇 𝑈Λ−1ΛΛ−1𝑈𝑇 𝐵]

= [𝐴 𝐵
𝐵𝑇 𝐵𝑇 𝑈Λ−1𝑈𝑇 𝐵]

In practice, �̃� does not need to be computed. Instead, it is used implicitly
to estimate the degree normalization vector:

̃𝑑 = �̃�1 = [𝐴1 + 𝐵1
𝐵𝑇 1 + 𝐵𝑇 𝐴−1𝐵1]

22

4.4 Nyström method

This approach requires computing the inverse of 𝐴, which is expensive
when 𝐴 is large. Here we use an algorithm reported in XXX to approxi-
mate the degree matrix.

23

References
Fang, Rongxin, Sebastian Preissl, Yang Li, Xiaomeng Hou, Jacinta Lucero,

Xinxin Wang, Amir Motamedi, et al. 2021. “Comprehensive analysis of
single cell ATAC-seq data with SnapATAC.” Nature Communications
12 (1): 1337. https://doi.org/10.1038/s41467-021-21583-9.

25

https://doi.org/10.1038/s41467-021-21583-9

	Preface
	What is epigenomics?
	AnnData – Annotated Data
	Introduction
	A tutorial on using backed AnnData objects
	Reading/opening a h5ad file.
	Closing a backed AnnData object
	Creating a backed AnnData object
	Accessing elements in a backed AnnData object
	Subsetting the AnnData
	Convert to in-memory representation

	Combining multiple AnnData objects into a AnnDataSet object
	Subsetting an AnnDataSet object
	Converting AnnDataSet to AnnData

	Input data format
	What is ATAC-seq?
	Single-Cell ATAC-Seq (scATAC-Seq)
	Fragment interval format
	Insertion format

	Dimension reduction
	Preprocessing
	Spectral embedding
	Matrix-free spectral embedding with cosine similarity
	Nyström method

	References

