snapatac2.metrics.tsse#
- snapatac2.metrics.tsse(adata, gene_anno, *, exclude_chroms=['chrM', 'M'], inplace=True, n_jobs=8)[source]#
Compute the TSS enrichment score (TSSe) for each cell.
import_data
must be ran first in order to use this function.- Parameters:
adata (
AnnData
|list
[AnnData
]) – The (annotated) data matrix of shapen_obs
xn_vars
. Rows correspond to cells and columns to regions.adata
could also be a list of AnnData objects. In this case, the function will be applied to each AnnData object in parallel.gene_anno (
Genome
|Path
) – AGenome
object or a GTF/GFF file containing the gene annotation.exclude_chroms (
list
[str
] |str
|None
) – A list of chromosomes to exclude.inplace (
bool
) – Whether to add the results toadata.obs
or return it as a dictionary.n_jobs (
int
) – Number of jobs to run in parallel whenadata
is a list. Ifn_jobs=-1
, all CPUs will be used.
- Returns:
If
inplace = True
, cell-level TSSe scores are computed and stored inadata.obs['tsse']
. Library-level TSSe scores are stored inadata.uns['library_tsse']
. Fraction of fragments overlapping TSS are stored inadata.uns['frac_overlap_TSS']
. Ifinplace = False
, return a tuple containing all these values.- Return type:
tuple[np.ndarray, tuple[float, float]] | list[tuple[np.ndarray, tuple[float, float]]] | None
Examples
>>> import snapatac2 as snap >>> data = snap.pp.import_data(snap.datasets.pbmc500(downsample=True), chrom_sizes=snap.genome.hg38, sorted_by_barcode=False) >>> snap.metrics.tsse(data, snap.genome.hg38) >>> print(data.obs['tsse'].head()) AAACTGCAGACTCGGA-1 32.129514 AAAGATGCACCTATTT-1 22.052786 AAAGATGCAGATACAA-1 27.109808 AAAGGGCTCGCTCTAC-1 24.990329 AAATGAGAGTCCCGCA-1 33.264463 Name: tsse, dtype: float64