snapatac2.tl.aggregate_cells#
- snapatac2.tl.aggregate_cells(adata, use_rep='X_spectral', target_num_cells=None, min_cluster_size=50, random_state=0, key_added='pseudo_cell', inplace=True)[source]#
Aggregate cells into pseudo-cells.
Aggregate cells into pseudo-cells by iterative clustering.
- Parameters:
adata (
AnnData
|AnnDataSet
|ndarray
) – AnnData or AnnDataSet object or matrix.use_rep (
str
) –adata.obs
key for retrieving the input matrix.target_num_cells (
int
|None
) – If None,target_num_cells = num_cells / min_cluster_size
.min_cluster_size (
int
) – The minimum size of clusters.random_state (
int
) – Change the initialization of the optimization.key_added (
str
) –adata.obs
key under which to add the cluster labels.inplace (
bool
) – Whether to store the result in the anndata object.
- Returns:
If
inplace=False
, return the result as a numpy array. Otherwise, store the result inadata.obs[`key_added
]`.- Return type:
np.ndarray | None